
Objectives
In this chapter, we discuss the Data Encryption Standard (DES), the modern symmetric-key block 
cipher. The following are our main objectives for this chapter:
 + To review a short history of DES
 + To defi ne the basic structure of DES
 + To describe the details of building elements of DES
 + To describe the round keys generation process
 + To analyze DES

The emphasis is on how DES uses a Feistel cipher to achieve confusion and diffusion of bits from the 
plaintext to the ciphertext.

6.1  INTRODUCTION
The Data Encryption Standard (DES) is a symmetric-key block cipher published by the National 
Institute of Standards and Technology (NIST).

6.1.1 History
In 1973, NIST published a request for proposals for a national symmetric-key cryptosystem. A proposal 
from IBM, a modifi cation of a project called Lucifer, was accepted as DES. DES was published in the 
Federal Register in March 1975 as a draft of the Federal Information Processing Standard (FIPS). 

After the publication, the draft was criticized severely for two reasons. First, critics questioned the 
small key length (only 56 bits), which could make the cipher vulnerable to brute-force attack. Second, 
critics were concerned about some hidden design behind the internal structure of DES. They were 
suspicious that some part of the structure (the S-boxes) may have some hidden trapdoor that would 
allow the National Security Agency (NSA) to decrypt the messages without the need for the key. Later 
IBM designers mentioned that the internal structure was designed to prevent differential cryptanalysis. 

DES was fi nally published as FIPS 46 in the Federal Register in January 1977. NIST, however, 
defi nes DES as the standard for use in unclassifi ed applications. DES has been the most widely used 
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symmetric-key block cipher since its publication. NIST later issued a new standard (FIPS 46-3) that 
recommends the use of triple DES (repeated DES cipher three times) for future applications. As we will 
see in Chapter 7, AES, the recent standard, is supposed to replace DES in the long run.

6.1.2 Overview
DES is a block cipher, as shown in Fig. 6.1.
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Fig. 6.1 Encryption and decryption with DES

At the encryption site, DES takes a 64-bit plaintext and creates a 64-bit ciphertext; at the decryption 
site, DES takes a 64-bit ciphertext and creates a 64-bit block of plaintext. The same 56-bit cipher key is 
used for both encryption and decryption. 

6.2  DES STRUCTURE
Let us concentrate on encryption; later we will discuss decryption. The encryption process is made of 
two permutations (P-boxes), which we call initial and fi nal permutations, and sixteen Feistel rounds. 
Each round uses a different 48-bit round key generated from the cipher key according to a predefi ned 
algorithm described later in the chapter. Figure 6.2 shows the elements of DES cipher at the encryption 
site.
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6.2.1 Initial and Final Permutations
Figure 6.3 shows the initial and fi nal permutations (P-boxes). Each of these permutations takes a 64-bit 
input and permutes them according to a predefi ned rule. We have shown only a few input ports and the 
corresponding output ports. These permutations are keyless straight permutations that are the inverse of 
each other. For example, in the initial permutation, the 58th bit in the input becomes the fi rst bit in the 
output. Similarly, in the fi nal permutation, the fi rst bit in the input becomes the 58th bit in the output. In 
other words, if the rounds between these two permutations do not exist, the 58th bit entering the initial 
permutation is the same as the 58th bit leaving the fi nal permutation.
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Fig. 6.3 Initial and fi nal permutation steps in DES

The permutation rules for these P-boxes are shown in Table 6.1. Each side of the table can be thought 
of as a 64-element array. Note that, as with any permutation table we have discussed so far, the value 
of each element defi nes the input port number, and the order (index) of the element defi nes the output 
port number.

Table 6.1 Initial and fi nal permutation tables

Initial Permutation Final Permutation
58 50 42 34 26 18 10 02
60 52 44 36 28 20 12 04
62 54 46 38 30 22 14 06
64 56 48 40 32 24 16 08
57 49 41 33 25 17 09 01
59 51 43 35 27 19 11 03
61 53 45 37 29 21 13 05
63 55 47 39 31 23 15 07

40 08 48 16 56 24 64 32
39 07 47 15 55 23 63 31
38 06 46 14 54 22 62 30
37 05 45 13 53 21 61 29
36 04 44 12 52 20 60 28
35 03 43 11 51 19 59 27
34 02 42 10 50 18 58 26
33 01 41 09 49 17 57 25

These two permutations have no cryptography signifi cance in DES. Both permutations are keyless 
and predetermined. The reason they are included in DES is not clear and has not been revealed by the 
DES designers. The guess is that DES was designed to be implemented in hardware (on chips) and that 
these two complex permutations may thwart a software simulation of the mechanism. 
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Example 6.1 Find the output of the initial permutation box when the input is given in hexadecimal 
as:

0x0002 0000 0000 0001

Solution The input has only two 1s (bit 15 and bit 64); the output must also have only two 1s (the 
nature of straight permutation). Using Table 6.1, we can fi nd the output related to these two bits. Bit 15 
in the input becomes bit 63 in the output. Bit 64 in the input becomes bit 25 in the output. So the output 
has only two 1s, bit 25 and bit 63. The result in hexadecimal is

0x0000 0080 0000 0002

Example 6.2 Prove that the initial and fi nal permutations are the inverse of each other by fi nding 
the output of the fi nal permutation if the input is

0x0000 0080 0000 0002

Solution Only bit 25 and bit 64 are 1s; the other bits are 0s. In the fi nal permutation, bit 25 becomes 
bit 64 and bit 63 becomes bit 15. The result 

0x0002 0000 0000 0001
The initial and fi nal permutations are straight D-boxes that are inverses of each other and 

hence are permutations. They have no cryptography signifi cance in DES. 

6.2.2 Rounds
DES uses 16 rounds. Each round of DES is a Feistel cipher, as shown in Fig. 6.4.
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Fig. 6.4 A round in DES (encryption site)

The round takes LI−1 and RI−1 from previous round (or the initial permutation box) and creates LI and 
RI, which go to the next round (or fi nal permutation box). As we discussed in Chapter 5, we can assume 
that each round has two cipher elements (mixer and swapper). Each of these elements is invertible. 
The swapper is obviously invertible. It swaps the left half of the text with the right half. The mixer is 
invertible because of the XOR operation. All noninvertible elements are collected inside the function
f (RI−1, KI).
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The heart of DES is the DES function. The DES 
function applies a 48-bit key to the rightmost 32 bits 
(RI−1) to produce a 32-bit output. This function is 
made up of four sections: an expansion D-box, a 
whitener (that adds key), a group of S-boxes, and a 
straight D-box as shown in Fig. 6.5. 
Expansion D-box Since RI−1 is a 32-bit input and 
KI is a 48-bit key, we fi rst need to expand RI−1 to 
48 bits. RI−1 is divided into 8 4-bit sections. Each 4-bit 
section is then expanded to 6 bits. This expansion 
permutation follows a predetermined rule. For each 
section, input bits 1, 2, 3, and 4 are copied to output 
bits 2, 3, 4, and 5, respectively. Output bit 1 comes 
from bit 4 of the previous section; output bit 6 comes 
from bit 1 of the next section. If sections 1 and 8 can be considered adjacent sections, the same rule ap-
plies to bits 1 and 32. Fig. 6.6 shows the input and output in the expansion permutation.

32-bit input

48-bit output

From bit 32 From bit 1

Fig. 6.6 Expansion permutation 

Although the relationship between the input and output can be defi ned mathematically, DES uses 
Table 6.2 to defi ne this D-box. Note that the number of output ports is 48, but the value range is only
1 to 32. Some of the inputs go to more than one output. For example, the value of input bit 5 becomes 
the value of output bits 6 and 8.

Table 6.2 Expansion D-box table

32 01 02 03 04 05
04 05 06 07 08 09
08 09 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 31 31 32 01

Whitener (XOR) After the expansion permutation, DES uses the XOR operation on the expanded 
right section and the round key. Note that both the right section and the key are 48-bits in length. Also 
note that the round key is used only in this operation. 



148 Cryptography and Network Security

S-Boxes The S-boxes do the real mixing (confusion). DES uses 8 S-boxes, each with a 6-bit input and 
a 4-bit output. See Fig. 6.7.
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The 48-bit data from the second operation is divided 
into eight 6-bit chunks, and each chunk is fed into a box. 
The result of each box is a 4-bit chunk; when these are 
combined the result is a 32-bit text. The substitution in each 
box follows a pre-determined rule based on a 4-row by 16-
column table. The combination of bits 1 and 6 of the input 
defi nes one of four rows; the combination of bits 2 through 
5 defi nes one of the sixteen columns as shown in Fig. 6.8. 
This will become clear in the examples. 

Because each S-box has its own table, we need eight 
tables, as shown in Tables 6.3 to 6.10, to defi ne the output 
of these boxes. The values of the inputs (row number and 
column number) and the values of the outputs are given as 
decimal numbers to save space. These need to be changed 
to binary.

Table 6.3  S-box 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 14 04 13 01 02 15 11 08 03 10 06 12 05 09 00 07
1 00 15 07 04 14 02 13 10 03 06 12 11 09 05 03 08
2 04 01 14 08 13 06 02 11 15 12 09 07 03 10 05 00
3 15 12 08 02 04 09 01 07 05 11 03 14 10 00 06 13

Table 6.4 S-box 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 15 01 08 14 06 11 03 04 09 07 02 13 12 00 05 10
1 03 13 04 07 15 02 08 14 12 00 01 10 06 09 11 05
2 00 14 07 11 10 04 13 01 05 08 12 06 09 03 02 15
3 13 08 10 01 03 15 04 02 11 06 07 12 00 05 14 09
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Table 6.5  S-box 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 10 00 09 14 06 03 15 05 01 13 12 07 11 04 02 08
1 13 07 00 09 03 04 06 10 02 08 05 14 12 11 15 01
2 13 06 04 09 08 15 03 00 11 01 02 12 05 10 14 07
3 01 10 13 00 06 09 08 07 04 15 14 03 11 05 02 12

Table 6.6 S-box 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 07 13 14 03 00 6 09 10 1 02 08 05 11 12 04 15
1 13 08 11 05 06 15 00 03 04 07 02 12 01 10 14 09
2 10 06 09 00 12 11 07 13 15 01 03 14 05 02 08 04
3 03 15 00 06 10 01 13 08 09 04 05 11 12 07 02 14

Table 6.7 S-box 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 02 12 04 01 07 10 11 06 08 05 03 15 13 00 14 09
1 14 11 02 12 04 07 13 01 05 00 15 10 03 09 08 06
2 04 02 01 11 10 13 07 08 15 09 12 05 06 03 00 14
3 11 08 12 07 01 14 02 13 06 15 00 09 10 04 05 03

Table 6.8 S-box 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 12 01 10 15 09 02 06 08 00 13 03 04 14 07 05 11
1 10 15 04 02 07 12 09 05 06 01 13 14 00 11 03 08
2 09 14 15 05 02 08 12 03 07 00 04 10 01 13 11 06
3 04 03 02 12 09 05 15 10 11 14 01 07 10 00 08 13

Table 6.9 S-box 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 4 11 2 14 15 00 08 13 03 12 09 07 05 10 06 01
1 13 00 11 07 04 09 01 10 14 03 05 12 02 15 08 06
2 01 04 11 13 12 03 07 14 10 15 06 08 00 05 09 02
3 06 11 13 08 01 04 10 07 09 05 00 15 14 02 03 12

Table 6.10 S-box 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 13 02 08 04 06 15 11 01 10 09 03 14 05 00 12 07
1 01 15 13 08 10 03 07 04 12 05 06 11 10 14 09 02
2 07 11 04 01 09 12 14 02 00 06 10 10 15 03 05 08
3 02 01 14 07 04 10 8 13 15 12 09 09 03 05 06 11
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Example 6.3 The input to S-box 1 is 100011. What is the output? 

Solution If we write the fi rst and the sixth bits together, we get 11 in binary, which is 3 in decimal. 
The remaining bits are 0001 in binary, which is 1 in decimal. We look for the value in row 3, column 1, 
in Table 6.3 (S-box 1). The result is 12 in decimal, which in binary is 1100. So the input 100011 yields 
the output 1100.

Example 6.4 The input to S-box 8 is 000000. What is the output? 

Solution If we write the fi rst and the sixth bits together, we get 00 in binary, which is 0 in decimal. 
The remaining bits are 0000 in binary, which is 0 in decimal. We look for the value in row 0, column 0, 
in Table 6.10 (S-box 8). The result is 13 in decimal, which is 1101 in binary. So the input 000000 yields 
the output 1101.

Final Permutation The last operation in the DES function is a permutation with a 32-bit input and 
a 32-bit output. The input/output relationship for this operation is shown in Table 6.11 and follows the 
same general rule as previous tables. For example, the seventh bit of the input becomes the second bit 
of the output.

Table 6.11 Straight permutation table

16 07 20 21 29 12 28 17
01 15 23 26 05 18 31 10
02 08 24 14 32 27 03 09
19 13 30 06 22 11 04 25

6.2.3 Cipher and Reverse Cipher
Using mixers and swappers, we can create the cipher and reverse cipher, each having 16 rounds. The 
cipher is used at the encryption site; the reverse cipher is used at the decryption site. The whole idea is 
to make the cipher and the reverse cipher algorithms similar. 
First Approach To achieve this goal, one approach is to make the last round (round 16) different 
from the others; it has only a mixer and no swapper. This is done in Figure 6.9. 

Although the rounds are not aligned, the elements (mixer or swapper) are aligned. We proved in 
Chapter 5 that a mixer is a self-inverse; so is a swapper. The fi nal and initial permutations are also 
inverses of each other. The left section of the plaintext at the encryption site, L0, is enciphered as L16 at 
the encryption site; L16 at the decryption is deciphered as L0 at the decryption site. The situation is the 
same with R0 and R16. 

A very important point we need to remember about the ciphers is that the round keys (K1 to K16) 
should be applied in the reverse order. At the encryption site, round 1 uses K1 and round 16 uses K16; at 
the decryption site, round 1 uses K16 and round 16 uses K1. 

In the fi rst approach, there is no swapper in the last round. 
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Fig. 6.9 DES cipher and reverse cipher for the fi rst approach

Algorithm
Algorithm 6.1 gives the pseudocode for the cipher and four corresponding routines in the fi rst approach. 
The codes for the rest of the routines are left as exercises. 
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Algorithm 6.1   Pseudocode for DES cipher 

Cipher (plainBlock[64], RoundKeys[16, 48], cipherBlock[64])
{
  permute (64, 64, plainBlock, inBlock, InitialPermutationTable)
  split (64, 32, inBlock, leftBlock, rightBlock) 
  for (round = 1 to 16)
  {
    mixer (leftBlock, rightBlock, RoundKeys[round])
    if (round!=16) swapper (leftBlock, rightBlock)
  }
  combine (32, 64, leftBlock, rightBlock, outBlock)
  permute (64, 64, outBlock, cipherBlock, FinalPermutationTable) 
} 
mixer (leftBlock[48], rightBlock[48], RoundKey[48])
{
  copy (32, rightBlock, T1)
  function (T1, RoundKey, T2)
  exclusiveOr (32, leftBlock, T2, T3)
  copy (32, T3, rightBlock)
}
swapper (leftBlock[32], rigthBlock[32])
{
  copy (32, leftBlock, T)
  copy (32, rightBlock, leftBlock)
  copy (32, T, rightBlock) 
} 
function (inBlock[32], RoundKey[48], outBlock[32])
{
  permute (32, 48, inBlock, T1, ExpansionPermutationTable)
  exclusiveOr (48, T1, RoundKey, T2)
  substitute (T2, T3, SubstituteTables)
  permute (32, 32, T3, outBlock, StraightPermutationTable) 
} 
substitute (inBlock[32], outBlock[48], SubstitutionTables[8, 4, 16])
{
  for (i = 1 to 8)
  {
   row ¨ 2 ¥ inBlock[i ¥ 6 + 1] + inBlock [i ¥ 6 + 6]
   col ¨ 8 ¥ inBlock[i ¥ 6 + 2] + 4 ¥ inBlock[i ¥ 6 + 3] +
       2 ¥ inBlock[i ¥ 6 + 4] + inBlock[i ¥ 6 + 5]

   value = SubstitutionTables [i][row][col]
 
   outBlock[[i ¥ 4 + 1] ¨ value / 8; value ¨ value mod 8 
   outBlock[[i ¥ 4 + 2] ¨ value / 4; value ¨ value mod 4
   outBlock[[i ¥ 4 + 3] ¨ value / 2; value ¨ value mod 2
   outBlock[[i ¥ 4 + 4] ¨ value 
  }
} 
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Alternative Approach In the fi rst approach, round 16 is different from other rounds; there is no 
swapper in this round. This is needed to make the last mixer in the cipher and the fi rst mixer in the re-
verse cipher aligned. We can make all 16 rounds the same by including one swapper to the 16th round 
and add an extra swapper after that (two swappers cancel the effect of each other). We leave the design 
for this approach as an exercise. 

Key Generation The round-key generator creates sixteen 48-bit keys out of a 56-bit cipher key. 
However, the cipher key is normally given as a 64-bit key in which 8 extra bits are the parity bits, which 
are dropped before the actual key-generation process, as shown in Fig. 6.10. 
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Fig. 6.10 Key generation

Parity Drop The preprocess before key expansion is a compression transposition step that we call 
parity bit drop. It drops the parity bits (bits 8, 16, 24, 32, …, 64) from the 64-bit key and permutes the 
rest of the bits according to Table 6.12. The remaining 56-bit value is the actual cipher key which is used 
to generate round keys. The parity drop step (a compression D-box) is shown in Table 6.12. 
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Table 6.12 Parity-bit drop table

57 49 41 33 25 17 09 01
58 50 42 34 26 18 10 02 
59 51 43 35 27 19 11 03 
60 52 44 36 63 55 47 39 
31 23 15 07 62 54 46 38 
30 22 14 06 61 53 45 37 
29 21 13 05 28 20 12 04

Shift Left After the straight permutation, the key is divided into two 28-bit parts. Each part is shifted 
left (circular shift) one or two bits. In rounds 1, 2, 9, and 16, shifting is one bit; in the other rounds, it is 
two bits. The two parts are then combined to form a 56-bit part. Table 6.13 shows the number of shifts 
for each round. 

Table 6.13 Number of bit shifts

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Bit shifts 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

Compression D-box The compression D-box changes the 58 bits to 48 bits, which are used as a 
key for a round. The compression step is shown in Table 6.14. 

Table 6.14 Key-compression table

14 17 11 24 01 05 03 28 
15 06 21 10 23 19 12 04 
26 08 16 07 27 20 13 02
41 52 31 37 47 55 30 40 
51 45 33 48 44 49 39 56 
34 53 46 42 50  36 29 32

Algorithm Let us write a simple algorithm to create round keys from the key with parity bits. 
Algorithm 6.2 uses several routines from Algorithm 6.1. The new one is the shiftLeft routine, for which 
the code is given. 

Algorithm 6.2   Algorithm for round-keys generation 

Key_Generator (keyWithParities[64], RoundKeys[16, 48], ShiftTable[16])
{
  permute (64, 56, keyWithParities, cipherKey, ParityDropTable)
  split (56, 28, cipherKey, leftKey, rightKey) 
  for (round = 1 to 16)
  {
   shiftLeft (leftKey, ShiftTable[round])
   shiftLeft (rightKey, ShiftTable[round])
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   combine (28, 56, leftKey, rightKey, preRoundKey)
   permute (56, 48, preRoundKey, RoundKeys[round], KeyCompressionTable)
  }
} 
shiftLeft (block[28], numOfShifts)
{
  for (i = 1 to numOfShifts)
  {
   T ¨ block[1]
   for (j = 2 to 28)
   {
    block [j−1] ¨ block [j]
   } 
   block[28] ¨ T
  }
} 

6.2.4 Examples
Before analyzing DES, let us look at some examples to see the how encryption and decryption change 
the value of bits in each round. 

Example 6.5 We choose a random plaintext block and a random key, and determine what the 
ciphertext block would be (all in hexadecimal):
  Plaintext: 123456ABCD132536  Key: AABB09182736CCDD
  CipherText: C0B7A8D05F3A829C
 Let us show the result of each round and the text created before and after the rounds. Table 6.15 fi rst 
shows the result of steps before starting the round. 

Table 6.15 Trace of data for Example 6.5 

Plaintext: 123456ABCD132536
After initial permutation:14A7D67818CA18AD
After splitting: L0=14A7D678 R0=18CA18AD

Round Left Right Round Key
Round 1 18CA18AD 5A78E394 194CD072DE8C

Round 2 5A78E394 4A1210F6 4568581ABCCE

Round 3 4A1210F6 B8089591 06EDA4ACF5B5

Round 4 B8089591 236779C2 DA2D032B6EE3

Round 5 236779C2 A15A4B87 69A629FEC913

Round 6 A15A4B87 2E8F9C65 C1948E87475E

Round 7 2E8F9C65 A9FC20A3 708AD2DDB3C0

Round 8 A9FC20A3 308BEE97 34F822F0C66D

Round 9 308BEE97 10AF9D37 84BB4473DCCC

Algorithm 6.2 (Contd.)
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Round 10 10AF9D37 6CA6CB20 02765708B5BF

Round 11 6CA6CB20 FF3C485F 6D5560AF7CA5

Round 12 FF3C485F 22A5963B C2C1E96A4BF3

Round 13 22A5963B 387CCDAA 99C31397C91F

Round 14 387CCDAA BD2DD2AB 251B8BC717D0

Round 15 BD2DD2AB CF26B472 3330C5D9A36D

Round 16 19BA9212 CF26B472 181C5D75C66D

After combination: 19BA9212CF26B472
Ciphertext: C0B7A8D05F3A829C                   (after fi nal permutation)

 The plaintext goes through the initial permutation to create completely different 64 bits (16 
hexadecimal digit). After this step, the text is split into two halves, which we call L0 and R0. The table 
shows the result of 16 rounds that involve mixing and swapping (except for the last round). The results 
of the last rounds (L16 and R16) are combined. Finally the text goes through fi nal permutation to create 
the ciphertext. 

Some points are worth mentioning here. First, the right section out of each round is the same as the left 
section out of the next round. The reason is that the right section goes through the mixer without change, 
but the swapper moves it to the left section. For example, R1 passes through the mixer of the second round 
without change, but then it becomes L2 because of the swapper. The interesting point is that we do not have 
a swapper at the last round. That is why R15 becomes R16 instead of becoming L16.

Example 6.6 Let us see how Bob, at the destination, can decipher the ciphertext received from 
Alice using the same key. We have shown only a few rounds to save space. Table 6.16 shows some 
interesting points. First, the round keys should be used in the reverse order. Compare Table 6.15 and 
Table 6.16. The round key for round 1 is the same as the round key for round 16. The values of L0 and 
R0 during decryption are the same as the values of L16 and R16 during encryption. This is the same with 
other rounds. This proves not only that the cipher and the reverse cipher are inverses of each other in the 
whole, but also that each round in the cipher has a corresponding reverse round in the reverse cipher. 
The result proves that the initial and fi nal permutation steps are also inverses of each other. 

Table 6.16 Trace of data for Example 6.6

Ciphertext: C0B7A8D05F3A829C
After initial permutation: 19BA9212CF26B472
After splitting: L0=19BA9212 R0=CF26B472 

Round Left Right Round Key
Round 1 CF26B472 BD2DD2AB 181C5D75C66D

Round 2 BD2DD2AB 387CCDAA 3330C5D9A36D

. . . . . . . . . . . .

Round 15 5A78E394 18CA18AD 4568581ABCCE

Round 16 14A7D678 18CA18AD 194CD072DE8C

After combination: 14A7D67818CA18AD
Plaintext:123456ABCD132536                    (after fi nal permutation)

Table 6.15 (Contd.)
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6.3  DES ANALYSIS
Critics have used a strong magnifi er to analyze DES. Tests have been done to measure the strength of 
some desired properties in a block cipher. The elements of DES have gone through scrutinies to see if 
they have met the established criteria. We discuss some of these in this section.

6.3.1 Properties
Two desired properties of a block cipher are the avalanche effect and the completeness. 

Avalanche Effect Avalanche effect means a small change in the plaintext (or key) should create a 
signifi cant change in the ciphertext. DES has been proved to be strong with regard to this property. 

Example 6.7 To check the avalanche effect in DES, let us encrypt two plaintext blocks (with the 
same key) that differ only in one bit and observe the differences in the number of bits in each round.

  Plaintext: 0000000000000000  Key: 22234512987ABB23
  Ciphertext: 4789FD476E82A5F1

  Plaintext: 0000000000000001  Key: 22234512987ABB23
  Ciphertext: 0A4ED5C15A63FEA3

 Although the two plaintext blocks differ only in the rightmost bit, the ciphertext blocks differ in 29 bits. 
This means that changing approximately 1.5 percent of the plaintext creates a change of approximately 
45 percent in the ciphertext. Table 6.17 shows the change in each round. It shows that signifi cant 
changes occur as early as the third round. 

Table 6.17 Number of bit differences for Example 6.7

Rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Bit differences 1 6 20 29 30 33 32 29 32 39 33 28 30 31 30 29

Completeness Effect Completeness effect means that each bit of the ciphertext needs to depend 
on many bits on the plaintext. The diffusion and confusion produced by D-boxes and S-boxes in DES, 
show a very strong completeness effect.

6.3.2 Design Criteria
The design of DES was revealed by IBM in 1994. Many tests on DES have proved that it satisfi es some 
of the required criteria as claimed. We briefl y discuss some of these design issues.

S-Boxes We have discussed the general design criteria for S-boxes in Chapter 5; we only discuss 
the criteria selected for DES here. The design provides confusion and diffusion of bits from each round 
to the next. According to this revelation and some research, we can mention several properties of
S-boxes.
 1. The entries of each row are permutations of values between 0 and 15. 
 2. S-boxes are nonlinear. In other words, the output is not an affi ne transformation of the input. 

See Chapter 5 for discussion on the linearity of S-boxes.
 3. If we change a single bit in the input, two or more bits will be changed in the output. 
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 4. If two inputs to an S-box differ only in two middle bits (bits 3 and 4), the output must differ in 
at least two bits. In other words, S(x) and S(x ⊕ 001100) must differ in at least two bits where 
x is the input and S(x) is the output. 

 5. If two inputs to an S-box differ in the fi rst two bits (bits 1 and 2) and are the same in the last two 
bits (5 and 6), the two outputs must be different. In other words, we need to have the following 
relation S(x) ≠ S(x ⊕ 11bc00), in which b and c are arbitrary bits. 

 6. There are only 32 6-bit input-word pairs (xi and xj), in which xi ⊕ xj ≠ (000000)2. These 32 input 
pairs create 32 4-bit output-word pairs. If we create the difference between the 32 output pairs, 
d = yi ⊕ yj, no more than 8 of these d’s should be the same. 

 7. A criterion similar to # 6 is applied to three S-boxes. 
 8. In any S-box, if a single input bit is held constant (0 or 1) and the other bits are changed 

randomly, the differences between the number of 0s and 1s are minimized. 

D-Boxes
Between two rows of S-boxes (in two subsequent rounds), there are one straight D-box (32 to 32) 
and one expansion D-box (32 to 48). These two D-boxes together provide diffusion of bits. We have 
discussed the general design principle of D-boxes in Chapter 5. Here we discuss only the ones applied 
to the D-boxes used inside the DES function. The following criteria were implemented in the design of 
D-boxes to achieve this goal:
 1. Each S-box input comes from the output of a different S-box (in the previous round). 
 2. No input to a given S-box comes from the output from the same box (in the previous round). 
 3. The four outputs from each S-box go to six different S-boxes (in the next round). 
 4. No two output bits from an S-box go to the same S-box (in the next round). 
 5. If we number the eight S-boxes, S1, S2, …, S8, 
 a. An output of Sj−2 goes to one of the fi rst two bits of Sj (in the next round). 
 b. An output bit from Sj −1 goes to one of the last two bits of Sj (in the next round). 
 c. An output of Sj +1 goes to one of the two middle bits of Sj (in the next round). 
 6. For each S-box, the two output bits go to the fi rst or last two bits of an S-box in the next round. 

The other two output bits go to the middle bits of an S-box in the next round. 
 7. If an output bit from Sj goes to one of the middle bits in Sk (in the next round), then an output 

bit from Sk cannot go to the middle bit of Sj. If we let j = k, this implies that none of the middle 
bits of an S-box can go to one of the middle bits of the same S-box in the next round. 

Number of Rounds DES uses sixteen rounds of Feistel ciphers. It has been proved that after eight 
rounds, each ciphertext is a function of every plaintext bit and every key bit; the ciphertext is thoroughly 
a random function of plaintext and ciphertext. Therefore, it looks like eight rounds should be enough. 
However, experiments have found that DES versions with less than sixteen rounds are even more vul-
nerable to known-plaintext attacks than brute-force attack, which justifi es the use of sixteen rounds by 
the designers of DES. 

6.3.3 DES Weaknesses
During the last few years critics have found some weaknesses in DES. 

Weaknesses in Cipher Design
We will briefl y mention some weaknesses that have been found in the design of the cipher. 



Data Encryption Standard (DES) 159

S-boxes At least three weaknesses are mentioned in the literature for S-boxes.
 1. In S-box 4, the last three output bits can be derived in the same way as the fi rst output bit by 

complementing some of the input bits.
 2. Two specifi cally chosen inputs to an S-box array can create the same output.
 3. It is possible to obtain the same output in a single round by changing bits in only three neighboring 

S-boxes.
D-boxes One mystery and one weakness were found in the design of D-boxes:
 1. It is not clear why the designers of DES used the initial and fi nal permutations; these have no 

security benefi ts.
 2. In the expansion permutation (inside the function), the fi rst and fourth bits of every 4-bit series 

are repeated. 

Weakness in the Cipher Key
Several weaknesses have been found in the cipher key.
Key Size Critics believe that the most serious weakness of DES is in its key size (56 bits). To do a 
brute-force attack on a given ciphertext block, the adversary needs to check 256 keys. 
 a. With available technology, it is possible to check one million keys per second. This means that 

we need more than two thousand years to do brute-force attacks on DES using only a computer 
with one processor.

 b. If we can make a computer with one million chips (parallel processing), then we can test the 
whole key domain in approximately 20 hours. When DES was introduced, the cost of such a 
computer was over several million dollars, but the cost has dropped rapidly. A special computer 
was built in 1998 that found the key in 112 hours. 

 c. Computer networks can simulate parallel processing. In 1977 a team of researchers used 3500 
computers attached to the Internet to fi nd a key challenged by RSA Laboratories in 120 days. 
The key domain was divided among all of these computers, and each computer was responsible 
to check the part of the domain.

 d. If 3500 networked computers can fi nd the key in 120 days, a secret society with 42,000 members 
can fi nd the key in 10 days.

The above discussion shows that DES with a cipher key of 56 bits is not safe enough to be used 
comfortably. We will see later in the chapter that one solution is to use triple DES (3DES) with two keys 
(112 bits) or triple DES with three keys (168 bits). 

Weak Keys Four out of 256 possible keys are called weak keys. A weak key is the one that, after par-
ity drop operation (using Table 6.12), consists either of all 0s, all 1s, or half 0s and half 1s. These keys 
are shown in Table 6.18. 

Table 6.18 Weak keys

Keys before parities drop (64 bits) Actual key (56 bits)
0101 0101 0101 0101 0000000 0000000

1F1F 1F1F 0E0E 0E0E 0000000 FFFFFFF

E0E0 E0E0 F1F1 F1F1 FFFFFFF 0000000

FEFE FEFE FEFE FEFE FFFFFFF FFFFFFF
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The round keys created from any of these weak keys are the same and have the same pattern as the 
cipher key. For example, the sixteen round keys created from the fi rst key is all made of 0s; the one from 
the second is made of half 0s and half 1s. The reason is that the key-generation algorithm fi rst divides 
the cipher key into two halves. Shifting or permutation of a block does not change the block if it is made 
of all 0s or all 1s. 

What is the disadvantage of using a weak key? If we encrypt a block with a weak key and subsequently 
encrypt the result with the same weak key, we get the original block. The process creates the same 
original block if we decrypt the block twice. In other words, each weak key is the inverse of itself 
Ek(Ek(P)) = P, as shown in Fig. 6.11. 

A weak key

DES
cipher

64-bit text

64-bit text

P

P

DES
inverse cipher

64-bit text

64-bit text

C

C

DES
cipher

DES
inverse cipher

Fig. 6.11 Double encryption and decryption with a weak key 

Weak keys should be avoided because the adversary can easily try them on the intercepted ciphertext. 
If after two decryptions the result is the same, the adversary has found the key.

Example 6.8 Let us try the fi rst weak key in Table 6.18 to encrypt a block two times. After two 
encryptions with the same key the original plaintext block is created. Note that we have used the 
encryption algorithm two times, not one encryption followed by another decryption.

  Key: 0x0101010101010101
  Plaintext: 0x1234567887654321  Ciphertext: 0x814FE938589154F7

  Key: 0x0101010101010101
  Plaintext: 0x814FE938589154F7  Ciphertext: 0x1234567887654321

Semi-weak Keys There are six key pairs that are called semi-weak keys. These six pairs are shown 
in Table 6.19 (64-bit format before dropping the parity bits). 

Table 6.19 Semi-weak keys

First key in the pair Second key in the pair
01FE 01FE 01FE 01FE FE01 FE01 FE01 FE01

1FE0 1FE0 0EF1 0EF1 E01F E01F F10E F10E

01E0 01E1 01F1 01F1 E001 E001 F101 F101

1FFE 1FFE 0EFE 0EFE FE1F FE1F FE0E FE0E

011F 011F 010E 010E 1F01 1F01 0E01 0E01

E0FE E0FE F1FE F1FE FEE0 FEE0 FEF1 FEF1
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A semi-weak key creates only two different round keys and each of them is repeated eight times. In 
addition, the round keys created from each pair are the same with different orders. To show the idea, we 
have created the round keys from the fi rst pairs as shown below:

Round key 1 9153E54319BD 6EAC1ABCE642

Round key 2 6EAC1ABCE642 9153E54319BD

Round key 3 6EAC1ABCE642 9153E54319BD

Round key 4 6EAC1ABCE642 9153E54319BD

Round key 5 6EAC1ABCE642 9153E54319BD

Round key 6 6EAC1ABCE642 9153E54319BD

Round key 7 6EAC1ABCE642 9153E54319BD

Round key 8 6EAC1ABCE642 9153E54319BD

Round key 9 9153E54319BD 6EAC1ABCE642

Round key 10 9153E54319BD 6EAC1ABCE642

Round key 11 9153E54319BD 6EAC1ABCE642

Round key 12 9153E54319BD 6EAC1ABCE642

Round key 13 9153E54319BD 6EAC1ABCE642

Round key 14 9153E54319BD 6EAC1ABCE642

Round key 15 9153E54319BD 6EAC1ABCE642

Round key 16 6EAC1ABCE642 9153E54319BD

As the list shows, there are eight equal round keys in each semi-weak key. In addition, round key 1 
in the fi rst set is the same as round key 16 in the second; round key 2 in the fi rst is the same as round 
key 15 in the second; and so on. This means that the keys are inverses of each other Ek2(Ek1(P)) = P, as 
shown in Fig. 6.12. 
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Fig. 6.12  A pair of semi-weak keys in encryption and decryption

Possible Weak Keys There are also 48 keys that are called possible weak keys. A possible weak key 
is a key that creates only four distinct round keys; in other words, the sixteen round keys are divided into 
four groups and each group is made of four equal round keys.
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Example 6.9 What is the probability of randomly selecting a weak, a semi-weak, or a possible weak 
key? 

Solution DES has a key domain of 256. The total number of the above keys are 64 (4 + 12 + 48). The 
probability of choosing one of these keys is 8.8 ¥ 10−16, almost impossible. 

Key Complement In the key domain (256), defi nitely half of the keys are complement of the other 
half. A key complement can be made by inverting (changing 0 to 1 or 1 to 0) each bit in the key. Does 
a key complement simplify the job of the cryptanalysis? It happens that it does. Eve can use only half of 
the possible keys (255) to perform brute-force attack. This is because

C = E (K, P) → C— = E (K—, P—) 

In other words, if we encrypt the complement of plaintext with the complement of the key, we get the 
complement of the ciphertext. Eve does not have to test all 256 possible keys, she can test only half of 
them and then complement the result. 

Example 6.10 Let us test the claim about the complement keys. We have used an arbitrary key and 
plaintext to fi nd the corresponding ciphertext. If we have the key complement and the plaintext, we can 
obtain the complement of the previous ciphertext (Table 6.20). 

Table 6.20 Results for Example 6.10

Original Complement
Key 1234123412341234 EDCBEDCBEDCBEDCB

Plaintext 12345678ABCDEF12 EDCBA987543210ED

Ciphertext E112BE1DEFC7A367 1EED41E210385C98

Key Clustering Key clustering refers to the situation in which two or more different keys can create 
the same ciphertext from the same plaintext. Obviously, each pair of the semi-weak keys is a key cluster. 
However, no more clusters have been found for the DES. Future research may reveal some more. 

6.4  SECURITY OF DES
DES, as the fi rst important block cipher, has gone through much scrutiny. Among the attempted attacks, 
three are of interest: brute-force, differential cryptanalysis, and linear cryptanalysis.

6.4.1 Brute-Force Attack
We have discussed the weakness of short cipher key in DES. Combining this weakness with the key 
complement weakness, it is clear that DES can be broken using 255 encryptions. However, today most 
applications use either 3DES with two keys (key size of 112) or 3DES with three keys (key size of 168). 
These two multiple-DES versions make DES resistant to brute-force attacks. 
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6.4.2 Differential Cryptanalysis
We discussed the technique of differential cryptanalysis on modern block ciphers in Chapter 5. DES 
is not immune to that kind of attack. However, it has been revealed that the designers of DES already 
knew about this type of attack and designed S-boxes and chose 16 as the number of rounds to make 
DES specifi cally resistant to this type of attack. Today, it has been shown that DES can be broken 
using differential cryptanalysis if we have 247 chosen plaintexts or 255 known plaintexts. Although this 
looks more effi cient than a brute-force attack, fi nding 247 chosen plaintexts or 255 know plaintexts is 
impractical. Therefore, we can say that DES is resistant to differential cryptanalysis. It has also been 
shown that increasing the number of rounds to 20 require more than 264 chosen plaintexts for this attack, 
which is impossible because the possible number of plaintext blocks in DES is only 264. 

We show an example of DES differential cryptanalysis in Appendix N. 

6.4.3 Linear Cryptanalysis
We discussed the technique of linear cryptanalysis on modern block ciphers in Chapter 5. Linear 
cryptanalysis is newer than differential cryptanalysis. DES is more vulnerable to linear cryptanalysis 
than to differential cryptanalysis, probably because this type of attack was not known to the designers of 
DES. S-boxes are not very resistant to linear cryptanalysis. It has been shown that DES can be broken 
using 243 pairs of known plaintexts. However, from the practical point of view, fi nding so many pairs 
is very unlikely. 

We show an example of DES linear cryptanalysis in Appendix N. 

6.5 MULTIPLE DES—CONVENTIONAL ENCRYPTION ALGORITHMS
If a block cipher has a key size, which is small in context to the present day computation power, then a 
natural way out may be to perform multiple encryptions by the block cipher. As an example, consider 
the DES algorithm which has a key size of 56 bits, which is short in context to the modern computation 
capability. The threat is that such a key value can be evaluated by brute force key search. Hence two 
DES applications give what is known as 2-DES. 

6.5.1 2-DES and Meet in the Middle Attack
Consider a message m, which is to be encrypted. The corresponding block cipher for one application of 
the DES applications is represented by Ek, where k is the corresponding DES key. The output of 2-DES 
is c = Ek2

(Ek1
(m)). To decrypt similarly, m = Dk1

(Dk2
(c)). This cipher, 2-DES should offer additional 

security, equivalent to both k1 and k2. The cipher 2-DES obtained by the repeated application of DES 
is called, 2 – DES = DES ¥ DES. This is called a product cipher obtained by the composition of two 
ciphers. Such an idea can similarly be extended to multiple ciphers.

It may be noted that such a product on the DES cipher is expected to provide additional security, because 
DES does not form a group under the composition operation. That is the composition (application) of 
two ciphers with two different keys cannot be obtained by a single application of DES with a key. Thus 
2-DES is expected to provide security equivalent to 56 ¥ 2=112 bits. However it can be shown that such 
a cipher can be attacked by an attack method which is called Meet-in-the-Middle attack. 
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6.5.2 Meet-in-the-Middle (MIM) Attack and 3-DES
Consider the cipher 2-DES as defi ned above. The plaintext and the ciphertext of the cipher is P={0,1}m. 
The key space of DES is K={0,1}n, the key size of the product cipher is expected to be K1 ¥ K2, where 
the key is represented as the ordered pair (k1,k2), where k1 belongs to K1 and k2 belongs to K2. 

The attacker obtains l pairs of plaintexts and ciphertexts: (p1,c1),…,(pl,c1). The key is say (K1,K2) but 
unknown to the attacker (obviously, else why will he/she be an attacker).

It is easy to prove that for all 1 £ i £ l, DESK1
(pi) = DES–1

K2
(c). There are in total 22n keys. The 

probability of a key satisfying this equation for a particular value of i is 2-m, as that is the block size of 
the cipher. Since all the i values of the plaintext, ciphertext pairs are independent, the probability of a 
key satisfying the above equation for all the l values of i, is 2-ml.

Thus the reduced key space which satisfi es the above test is expected to be 22n.2-ml = 22n-ml.
Suppose l ≥ 2n/m, hence the number of keys passing the above test is £ 1. Thus if for a key (K1,K2), 

for all 1 £ i £ l, DESKi
(pi) = DES–1

Ki
(c) is satisfi ed, there is a high probability that the key is the correct 

key. 
The attacker maintains two lists L1 and L2 as follows: 
L1 contains 2n rows, where each row stores one round DES encryptions of the l plaintexts, p1,…,pl. 

L2 contains also 2n rows where each row stores one round DES decryptions of the l ciphertexts, c1, …, 
cl. The lists are sorted in lexicographical order with respect to the plaintexts and ciphertexts. The lists 
look like as shown in the Fig. 6.13.
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Fig. 6.13

The attacker now searches the lists L1 and L2 and looks for a row i in L1 which matches with a row 
j in L2. Then by the above discussion, if l ≥ 2n/m there is a high probability that the key is 1 2( , )jiK K
. What is the complexity of the attack? Each table has 2n rows. Each row has l blocks of size m bits 
each plus an additional n bits for the key. Hence each row of the table has ml+n bits. Thus the memory 
required by the attacker per table is 2n(ml + n), and for the two tables it is equal to 2n+1(ml + n). The 
time complexity of the attack is proportional to the number of encryptions or decryptions required. This 
works out to 2.l.2n=l.2n+1.

This is an example of known plaintext attack, because the plaintext is known but not chosen. 
Thus we see that for typical values of DES, where n = m = 56, the security provided by DES against 

a meet-in-the-middle attack is that of 57 bits, as opposed to the expected security of 112 bits. Also it 
may be noted that the attack works with a high probability of success if l ≥ 2, which means that only two 
plaintexts needs to be known for the attack. 

Since double DES or 2-DES has a problem of this meet-in-the-middle attack, Triple-DES or 3-DES 
was developed. The expected security of 3-DES is 112 bits (why?). 
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There are in general two fl avors of 3-DES. There are at least two fl avors of implementation of 3-DES. 
The fi rst implementation uses three keys, namely K1, K2, K3. The ciphertext of m is thus obtained 
by

1 2 3
[ ( ( ))].k k kC DES DES DES m=  The second way to implement 3-DES is using two keys, thus 

1 2 1
1[ ( ( ))].k k kC DES DES DES m-=  Thus if the keys K1 and K2 are the same then we obtain a single DES. 

This backward compatibility of the two key version of 3-DES is the reason why the middle layer is a 
decryption. It has otherwise no security implications. 

6.6 EXAMPLES OF BLOCK CIPHERS INFLUENCED BY DES

6.6.1 The CAST Block Cipher
The CAST Block Cipher is an improvement of the DES block cipher, invented in Canada by Carlisle 
Adams and Stafford Tavares. The name of the cipher seems to be after the initials of the inventors. The 
CAST algorithm has 64 bit block size and has a key of size 64 bits. 

CAST is based on the Feistel structure to implement the substitution permutation network. The authors 
state that they use the Feistel structure, as it is well studied and free of basic structural weaknesses. 

S-Boxes of CAST CAST uses S-Boxes of dimension m ¥ n (m < n). The typical dimension of the 
S-Boxes of CAST is 8 ¥ 32. The principle behind the construction is as follows: choose n distinct binary 
bent functions of length 2m, such that the linear com-
binations of these functions sum to highly non-linear, 
Boolen functions. Bent function are Boolen functions 
with even input variables having the highest possible 
non-linearity. The resultant functions also satisfy Strict 
Avalanche Criteria (SAC). SAC states that S-Box out-
put bit j should change with probability ½ when any 
single input bit is changed, for all i, j. Note that the 
probability is computed over the set of all pairs of in-
put vectors which differ only in bit i. Half of the bent 
functions have a weight of (2m–1+2(m/2)–1) and the other 
have a weight of (2m–1 – 2(m/2)-1). 

Encryption Function The plaintext block is di-
vided into a left half and a right half. The algorithm has 
8 rounds. Each round is essentially a Feistel structure. 
In each round the right half is combined with the round 
key using a function f and then XOR-ed with the left 
half. The new left half after the round is the same as 
the right half before the round. After 8 iterations of the 
rounds, the left and the right half are concatenated to 
form the ciphertext. 

The Round Function f The round function in 
CAST can be realized as follows. The 32 bit input can 
be combined with 32 bits of the round key through a 
function, denoted by “a” (refer Fig. 6.14). 

     32-bit right half 

a Ki

SBox  1 SBox  2 

b

c

d

SBox  3 

SBox  4 

8 88 8

3-bit data

Fig. 6.14
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The 32-bit data half is combined using operation “a” and the 32-bit result is split into 8 bit pieces. 
Each piece is input into a 8 ¥ 32 S-Box. The output of S-Box 1 and 2 are combined using the operation 
“b”; the 32 bit output is combined with the output of S-Box 3, the output is combined in turn with the 
output of S-Box 4. The combining functions are denoted in the fi gure by “c” and “d”. A simple way 
would be where all the combining functions are XOR functions, however more complex operations may 
also be used. 

Key Scheduling of CAST The key scheduling in CAST has three main components: 
 1. A key transformation step which converts the primary key (input key) to an intermediate key.
 2. A relatively simple bit-selection algorithm mapping the primary key and the intermediate key 

to a form, referred as partial key bits. 
 3. A set of key-schedule S-Boxes which are used to create subkeys from the partial key bits.

Let, the input key be denoted by KEY = k1k2k3k4k5k6k7k8, where ki is the ith byte of the primary 
key. The key transformation step generates the intermediate key, KEY’ = k’1k’2k’3k’4k’5k’6k’7k’8 as 
follows:
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Here, S1 and S2 are key-schedule S-Boxes of dimension 8 ¥ 32. 
Subsequently, there is a bit-selection step which operates as shown below:
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The partial key bits are used to obtain the subkeys, Ki. The subkeys are 32 bits, and are obtained as 
follows:

' '
1 ,1 2 ,2( ) ( )i i iK S K S K= ≈

Here, K¢i,j is the jth byte of K¢i. Thus the 8 round subkeys are obtained.
The CAST block cipher can also be implemented with 128 bits, and is referred to as CAST-128. The 

essential structure of the cipher is still the same as discussed above. 

6.6.2 Blowfi sh
Blowfi sh is a 64-bit block cipher invented by Bruce Schneier. Blowfi sh was designed for fast ciphering 
on 32-bit microprocessors. Blowfi sh is also compact and has a variable key length which can be increased 
to 448 bits. 
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Blowfi sh is suitable for applications where the key does not change frequently like communication 
links or fi le encryptors. However for applications like packet switching or as an one-way hash function, it 
is unsuitable. Blowfi sh is not ideal for smart cards, which requires even more compact ciphers. Blowfi sh 
is faster than DES when implemented on 32-bit microprocessors. Next we discuss on the round structure 
of Blowfi sh.

Round Structure The algorithm is based on 
the Feistel structure and has two important parts: 
the round structure and the key expansion func-
tion. 

There are 16 rounds, and each round are made 
of simple transformations which are iterated. Each 
round consists of a key-dependent permutation, 
and a key and data-dependent substitution. All 
the operations are additions and XORs on 32 bit 
words, and lookups in 4 32-bit S-Boxes. Blowfi sh 
has a P-array, P0,P1,…,P18 each of which are 32 
bit subkeys. There are 4 S-Boxes, each of which 
maps an 8-bit input to 32-bits. The round structure 
of Blowfi sh is illustrated in Fig. 6.15.

The round function is also explained underneath 
with a pseudo-code. 
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The function F is central to the security of the block cipher and is defi ned as below:
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Key Scheduling Algorithm The subkeys are computed using the following method:
 1. The P-array and then the four S-Boxes are initialized with a fi xed string. The string is the 

hexadecimal digits of π.
 2. P1 is XOR-ed with 32 bits of the key, P2 is XOR-ed with the next 32 bits of the key, and so on 

for all the bits of the key. If needed the key bits are cycled to ensure that all the P-array elements 
are XOR-ed.
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 3. An all-zero string is encrypted with the Blowfi sh algorithm, with the subkeys P1 to P18 obtained 
so far in steps 1 and 2.

 4. P1 and P2 are replaced by the 64 bit output of step 3.
 5. The output of step 3 is now encrypted with the updated subkeys to replace P3 and P4 with the 

ciphertext of step 4.
 6. This process is continued to replace all the P-arrays and the S-Boxes in order.

This complex key-scheduling implies that for faster operations the subkeys should be precomputed 
and stored in the cache for faster access. 

Security analysis by Serge Vaudenay shows that for a Blowfi sh algorithm implemented with known 
S-Boxes (note that in the original cipher the S-Boxes are generated during the encryption process) and 
with r-rounds, a differential attack can recover the P-array with 28r+1 chosen plaintexts. 

6.6.3 IDEA
IDEA is another block cipher. It operates on 64 bit data blocks and the key is 128 bit long. It was 
invented by Xuejia Lai and James Massey, and named IDEA (International Data Encryption Algorithm) 
in 1990, after modifying and improving the initial proposal of the cipher based on the seminal work on 
Differential cryptanalysis by Biham and Shamir. 

The design principle behind IDEA is the “mixing of arithmetical operations from different algebraic 
groups”. These arithmetical operations are easily implemented both in hardware and software. 

The underlying operations are XOR, addition modulo 216, multiplication modulo 210+1. 
The cipher obtains the much needed non-linearity from the later two arithmetical operations and does 

not use an explicit S-Box.

Round Transformation of IDEA The 64-bit data is divided into four 16 bit blocks: X1, X2, X3, 
X4. These four blocks are processed through eight rounds and transformed by the above arithmetical 
operations among each other and with six 16 bit subkeys. In each round the sequence of operations is 
as follows: 

1. Multiply X1 and the fi rst subkey.
2. Add X2 and the second subkey. 
3. Add X3 and the third subkey.
4. Multiply X4 and the fourth subkey.
5. XOR the results of step 1 and 3.
6. XOR the results of step 2 and 4. 
7. Multiply the results of steps 5 with the fi fth subkey.
8. Add the results of steps 6 and 7.
9. Multiply the results of steps 8 with the sixth subkey.
10. Add the results of steps 7 and 9.
11. XOR the results of steps 1 and 9.
12. XOR the results of steps 3 and 9.
13. XOR the results of steps 2 and 10.
14. XOR the results of steps 4 and 10.
The outputs of steps 11, 12, 13 and 14 are stored in four words of 16 bits each, namely Y1, Y2, Y3 and 

Y4. The blocks Y2 and Y3 are swapped, and the resultant four blocks are the output of a round of IDEA. 
It may be noted that the last round of IDEA does not have the swap step.

Instead the last round has the following additional transformations:
 1. Multiply Y1 and the fi rst subkey.
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 2. Add Y2 and the second subkey.
 3. Add Y3 and the third subkey.
 4. Multiply Y4 and the fourth subkey.

Finally, the ciphertext is the concatenation of the blocks Y1, Y2, Y3 and Y4. 

Key Scheduling of IDEA IDEA has a very simple key scheduling. It takes the 128 bit key and 
divides it into eight 16 bit blocks. The fi rst six blocks are used for the fi rst round, while the remaining 
two are to be used for the second round. Then the entire 128 bit key is given a rotation for 25 steps to 
the left and again divided into eight blocks. The fi rst four blocks are used as the remaining subkeys for 
the second round, while the last four blocks are to be used for the third round. The key is then again 
given a left shift by 25 bits, and the other subkeys are obtained. The process is continued till the end of 
the algorithm. 

For decryption, the subkeys are reversed and are either the multiplicative or additive inverse of the 
encryption subkeys. The all zero subkey is considered to represent 216=–1 for the modular multiplication 
operation, mod 216+1. Thus the multiplicative inverse of 0 is itself, as –1 multiplied with –1 gives 1, the 
multiplicative identity in the group. Computing these keys may have its overhead, but it is a one time 
operation, at the beginning of the decryption process. 

IDEA has resisted several cryptanalytic efforts. The designers gave argument to justify that only 4 
rounds of the cipher makes it immune to differential cryptanalysis. 

Joan Daemen, Rene Govaerts and Joos Vandewalle showed that the cipher had certain keys which 
can be easily discovered in a chosen plaintext attack. 

They used the fact that the use of multiplicative subkeys with the value of 1 or -1 gives rise to linear 
factors in the round function. A linear factor is a linear equation in the key, input and output bits that hold 
for all possible input bits. The linear factors can be revealed by expressing the modulo 2 sum of LSBs 
of the output subblocks of an IDEA round in terms of inputs and key bits. 

From the round structure of IDEA, the XOR of the LSBs of the fi rst and second output subblock of a 
round are represented by y1 and y2. 

1 2 1 1 0 3 3( . ) | 1y y X Z x z≈ = ≈ ≈ ≈

If Z1=(-)1=0…01 (i,e if the 15 MSB bits of the Z1 are 0), we have the following linear equation:

1 2 1 3 1 3 1y y x x z z≈ = ≈ ≈ ≈ ≈

If the key bits are considered as constants, this linear factor can be interpreted as the propagation of 
knowledge from to x1 ≈ x3 to y1 ≈ y2 . This is indicated by (1,0,1,0) Æ (1,1,0,0).

Similar factors and their corresponding conditions on subkey blocks can be found for all 15 
combinations of LSB output bits and are listed in the following table:

Table 6.21 Linear Factors in the round function with conditions on the subkeys

Linear Factor Z1 Z4 Z5 Z6

(0,0,0,1)Æ(0,0,1,0) – (–)1 – (–)1

(0,0,1,0)Æ(1,0,1,1) – – (–)1 (–)1

(0,0,1,1)Æ(1,0,0,1) – (–)1 (–)1 –

(0,1,0,0)Æ(0,0,0,1) – – – (–)1

(0,1,0,1)Æ(0,0,1,1) – (–)1 – –
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(0,1,1,0)Æ(1,0,1,0) – – (–)1 –

(0,1,1,1)Æ(1,0,0,0) – (–)1 (–)1 (–)1

(1,0,0,0)Æ(0,1,1,1) (–)1 – (–)1 (–)1

(1,0,0,1)Æ(0,1,0,1) (–)1 (–)1 (–)1 –

(1,0,1,0)Æ(1,1,0,0) (–)1 – – –

(1,0,1,1)Æ(1,1,1,0) (–)1 (–)1 – (–)1

(1,1,0,0)Æ(0,1,1,0) (–)1 – (–)1 –

(1,1,0,1)Æ(0,1,0,0) (–)1 (–)1 (–)1 (–)1

(1,1,1,0)Æ(1,1,0,1) (–)1 – – (–)1

(1,1,1,1)Æ(1,1,1,1) (–)1 (–)1 – –

The linear factors in the rounds can be combined to obtain multiple round linear factors, by combining 
linear factors such that the intermediate terms cancel out. For every round they impose conditions on 
subkeys that can be converted into conditions on global keys, using the following table (which follows 
from the key scheduling algorithm of IDEA):

Table 6.22 Derivation of encryption subkeys from the global key of size 128 bits

r Z1 Z2 Z3 Z4 Z5 Z6
1 0–15 16–31 32–47 48–63 64–79 80–95
2 96–111 112–127 25–40 41–56 57–72 73–88
3 89–104 105–120 121–8 9–24 50–65 66–81
4 82–97 98–113 114–1 2–17 18–33 34–49
5 75–90 91–106 107–122 123–10 11–26 27–42
6 43–58 59–74 100–115 116–3 4–19 20–35
7 36–51 52–67 68–83 84–99 125–12 13–28
8 29–44 45–60 61–76 77–92 93–108 109–124
9 22–37 38–53 54–69 70–85 – –

A possible combination for a multiple round linear factor for IDEA is shown in the underlying table. 
The conditions on the global key bits are also mentioned. The global key bits whose indices are there in 
the table should be zero. Since key bits with indices 26-28, 72-74 or 111-127 do not appear, there are 223 
global keys that can have this linear factor. This is called a class of weak keys as they can be detected by 
checking the satisfaction of linear factors by some plaintext-ciphertext combinations. 

Table 6.23 Conditions on key bits for linear factor (1,0,1,0)->(0,1,1,0)

Round Input Term Z1 Z5
1 (1,0,1,0) 0–14 –
2 (1,1,0,0) 96–110 57–71
3 (0,1,1,0) – 50–64
4 (1,0,1,0) 82–96 –
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5 (1,1,0,0) 75–89 11–25
6 (0,1,1,0) – 4–18
7 (1,0,1,0) 36–50 –
8 (1,1,0,0) 29–44 93–107
9 (0,1,1,1) – – 

6.7 RECOMMENDED READING
The following books and websites provide more details about subjects discussed in this chapter. The 
items enclosed in brackets […] refer to the reference list at the end of the book. 

Books
[Sta06], [Sti06], [Rhe03], [Sal03], [Mao04], and [TW06] discuss DES. 

WebSites
The following websites give more information about topics discussed in this chapter.

http://www.itl.nist.gov/fi pspubs/fi p46-2.htm
www.nist.gov/director/prog-ofc/report01-2.pdf
www.engr.mun.ca/~howard/PAPERS/ldc_tutorial.ps
islab.oregonstate.edu/koc/ece575/notes/dc1.pdf
homes.esat.kuleuven.be/~abiryuko/Cryptan/matsui_des
http://nsfsecurity.pr.erau.edu/crypto/lincrypt.html

Key Terms

avalanche effect National Security Agency (NSA)
completeness effect parity bit drop
Data Encryption Standard (DES) possible weak keys
double DES (2DES) round-key generator
Federal Information Processing Standard semi-weak keys
 (FIPS) triple DES (3DES)
key complement triple DES with three keys
meet-in-the-middle attack triple DES with two keys
National Institute of Standards and Technology (NIST) weak keys

Summary

 H The Data Encryption Standard (DES) is a symmetric-key block cipher published by the National Institute 
of Standards and Technology (NIST) as FIPS 46 in the Federal Register.

 H At the encryption site, DES takes a 64-bit plaintext and creates a 64-bit ciphertext. At the decryption site, 
DES takes a 64-bit ciphertext and creates a 64-bit block of plaintext. The same 56-bit cipher key is used 
for both encryption and decryption.

 H The encryption process is made of two permutations (P-boxes), which we call initial and fi nal permutations, 
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and sixteen Feistel rounds. Each round of DES is a Feistel cipher with two elements (mixer and swapper). 
Each of these elements is invertible.

 H The heart of DES is the DES function. The DES function applies a 48-bit key to the rightmost 32 bits 
to produce a 32-bit output. This function is made up of four operations: an expansion permutation, a 
whitener (that adds key), a group of S-boxes, and a straight permutation.

 H The round-key generator creates sixteen 48-bit keys out of a 56-bit cipher key. However, the cipher key is 
normally presented as a 64-bit key in which 8 extra bits are the parity bits, which are dropped before the 
actual key-generation process.

 H DES has shown a good performance with respect to avalanche and completeness effects. Areas of 
weaknesses in DES include cipher design (S-boxes and P-boxes) and cipher key (length, weak keys, 
semi-weak keys, possible weak keys, and key complements). 

 H Since DES is not a group, one solution to improve the security of DES is to use multiple DES (double 
and triple DES). Double DES is vulnerable to meet-in-the-middle attack, so triple DES with two keys or 
three keys is common in applications. 

 H The design of S-boxes and number of rounds makes DES almost immune from the differential 
cryptanalysis. However, DES is vulnerable to linear cryptanalysis if the adversary can collect enough 
known plaintexts. 

Practice Set
Review Questions

 6.1 What is the block size in DES? What is the cipher key size in DES? What is the round-key size in DES?
 6.2 What is the number of rounds in DES?
 6.3 How many mixers and swappers are used in the fi rst approach of making encryption and decryption 

inverses of each other? How many are used in the second approach?
 6.4 How many permutations are used in a DES cipher algorithm? How many permutations are used in the 

round-key generator?
 6.5 How many exclusive-or operations are used in the DES cipher?
 6.6 Why does the DES function need an expansion permutation?
 6.7 Why does the round-key generator need a parity drop permutation? 
 6.8 What is the difference between a weak key, a semi-weak key, and a possible weak key?
 6.9 What is double DES? What kind of attack on double DES makes it useless?
 6.10 What is triple DES? What is triple DES with two keys? What is triple DES with three keys? 

Exercises
 6.11 Answer the following questions about S-boxes in DES:
 a. Show the result of passing 110111 through S-box 3.
 b. Show the result of passing 001100 through S-box 4.
 c. Show the result of passing 000000 through S-box 7.
 d. Show the result of passing 111111 through S-box 2.
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 6.12 Draw the table to show the result of passing 000000 through all 8 S-boxes. Do you see a pattern in the 
outputs?

 6.13 Draw the table to show the result of passing 111111 through all 8 S-boxes. Do you see a pattern in the 
outputs?

 6.14 Check the third criterion for S-box 3 using the following pairs of inputs.
 a. 000000 and 000001
 b. 111111 and 111011
 6.15 Check the fourth design criterion for S-box 2 using the following pairs of inputs.
 a. 001100 and 110000
 b. 110011 and 001111
 6.16 Check the fi fth design criterion for S-box 4 using the following pairs of inputs.
 a. 001100 and 110000
 b. 110011 and 001111
 6.17 Create 32 6-bit input pairs to check the sixth design criterion for S-box 5. 
 6.18 Show how the eight design criteria for S-box 7 are fulfi lled. 
 6.19 Prove the fi rst design criterion for P-boxes by checking the input to S-box 2 in round 2.
 6.20 Prove the second design criterion for P-boxes by checking inputs to S-box 3 in round 4. 
 6.21 Prove the third design criterion for P-boxes by checking the output of S-box 4 in round 3. 
 6.22 Prove the fourth design criterion for P-boxes by checking the output of S-box 6 in round 12. 
 6.23 Prove the fi fth design criteria for P-boxes by checking the relationship between S-boxes 3, 4, and 5 in 

rounds 10 and 11. 
 6.24 Prove the sixth design criteria for P-boxes by checking the destination of an arbitrary S-box. 
 6.25 Prove the seventh design criterion for P-boxes by checking the relationship between S-box 5 in round 4 

and S-box 7 in round 5. 
 6.26 Redraw Fig. 6.9 using the alternate approach. 
 6.27 Prove that the reverse cipher in Fig. 6.9 is in fact the inverse of the cipher for a three-round DES. Start with 

a plaintext at the beginning of the cipher and prove that you can get the same plaintext at the end of the 
reverse cipher. 

 6.28 Carefully study the key compression permutation of Table 6.14. 
 a. Which input ports are missing in the output?
 b. Do all left 24 output bits come from all left 28 input bits?
 c. Do all right 24 output bits come from all right 28 input bits? 
 6.29 Show the results of the following hexadecimal data

0110 1023 4110 1023
  after passing it through the initial permutation box.
 6.30 Show the results of the following hexadecimal data

AAAA BBBB CCCC DDDD
  after passing it through the fi nal permutation box. 
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 6.31 If the key with parity bit (64 bits) is 0123 ABCD 2562 1456, fi nd the fi rst round key. 
 6.32 Using a plaintext block of all 0s and a 56-bit key of all 0s, prove the key-complement weakness assuming 

that DES is made only of one round. 
 6.33 Can you devise a meet-in-the- middle attack for a triple DES?
 6.34 Write pseudocode for the permute routine used in Algorithm 6.1

permute (n, m, inBlock[n], outBlock[m], permutationTable[m])

 6.35 Write pseudocode for the split routine used in Algorithm 6.1

split (n, m, inBlock[n], leftBlock[m], rightBlock[m])

 6.36 Write pseudocode for the combine routine used in Algorithm 6.1

combine (n, m, leftBlock[n], rightBlock[n], outBlock[m])

 6.37 Write pseudocode for the exclusiveOr routine used in Algorithm 6.1
exclusiveOr (n, fi rstInBlock[n], secondInBlock[n], outBlock[n])

 6.38 Change Algorithm 6.1 to represent the alternative approach. 
 6.39 Augment Algorithm 6.1 to be used for both encryption and decryption.


